



### 14 AUG 2023 LITERATURE REVIEW COMPILATION

MDT Morbidity & Mortality Peer Review Committee

# URETER TRAUMA

**TAKE A LOOK** 

**VERONICA BUSTILLO-ARUCA, MD** 

- Most cases of ureteral injury are secondary to penetrating trauma; 2-5% of GSWs
- It's rare, 1% of urologic trauma
- It's not an emergency, you CAN look later
- Delay in diagnosis is common, very common. 38.2%

- 60% of them involve the proximal ureter
- After day 6 we dramatically increase patient morbidity.
- Early diagnosis is the single most important prognostic factor

## **WHICH ZONE?**

### 1, 2, 3

- It's not expanding, doesn't matter: take a look!
- Too unstable to look back there:
  - > CT pyelogram
  - > 2<sup>nd</sup> Look
  - Bedside cystoscopy with fluro
- Call a friend: urology consultation early on

### Timing of DVT Prophylaxis

### In Trauma Patients with Solid Organ Injury Undergoing NOM

Eric Raschke, DO



When is It Safe to Start VTE Prophylaxis After Blunt Solid Organ Injury? A Prospective Study from a Level I Trauma Center Schellenberg, M., Inaba, K., Biswas, S. *et al.* When is It Safe to Start VTE Prophylaxis After Blunt Solid Organ Injury? A Prospective Study from a Level I Trauma Center. *World J Surg* **43**, 2797–2803 (2019). <u>https://doi.org/10.1007/s00268-019-</u>

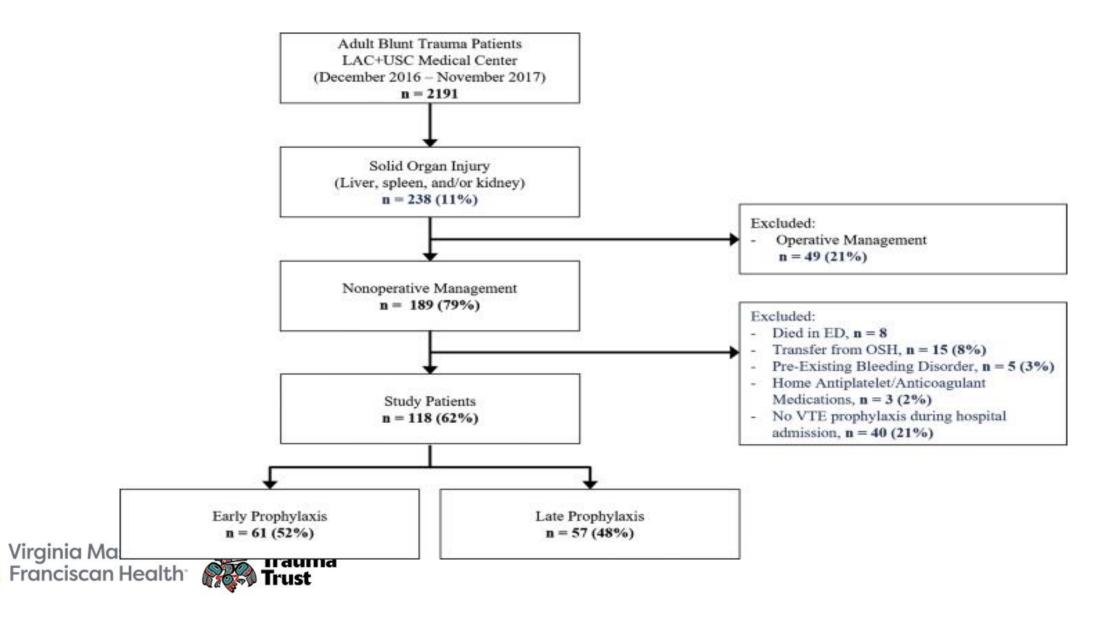
A recent prospective study published in World of Trauma looking at safety and efficacy of starting DVT prophylaxis in blunt abdominal trauma patients with solid organ injury, in attempt to validate retrospective studies performed in the past.



05096-7

### Methods

- Inclusion criteria: >15 of age presenting after blunt trauma (12/01/16–11/30/17) were prospectively screened. Patients were included if solid organ injury (liver, spleen, kidney) was diagnosed on admission CT scan and nonoperative management was planned.
- Exclusion Criteria: ED deaths, transfers, patients with pre-existing bleeding disorders or home antiplatelet/anticoagulant medications, and those who did not receive VTE prophylaxis were excluded

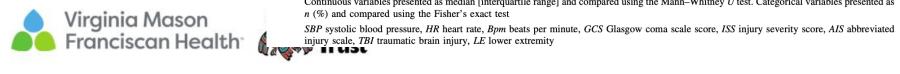



#### Methods

- Demographics, injury/clinical data, type/timing of VTE prophylaxis initiation, and outcomes were collected.
- Patients were dichotomized into study groups based on VTE prophylaxis initiation time: Early (≤48 h) vs Late (>48 h after admission)
- The primary study outcome was VTE event rate. Secondary outcomes included hospital length of stay, intensive care unit days, need for and volume of post-prophylaxis blood transfusion, need for delayed (post-prophylaxis) interventional radiology or operative intervention, failure of nonoperative management, and mortality.



#### **Patient Selection**




#### Demographics

| World J | Surg | (2019) | 43:2797-2803 |
|---------|------|--------|--------------|
|---------|------|--------|--------------|

| 2 | 8 | n | 1 |
|---|---|---|---|
| - | o | U | Ŧ |

|                            | All patients $(n = 118)$ | Early prophylaxis $(n = 61, 52\%)$ | Late prophylaxis ( $n = 57, 48\%$ ) | р     |
|----------------------------|--------------------------|------------------------------------|-------------------------------------|-------|
| Demographics               |                          |                                    |                                     |       |
| Age, years                 | 36 [27–55]               | 36 [27–54]                         | 36 [27–56]                          | 0.631 |
| Male                       | 78 (66%)                 | 39 (64%)                           | 39 (68%)                            | 0.698 |
| Clinical data on admission |                          |                                    |                                     |       |
| SBP, mmHg                  | 127 [112–146]            | 126 [105–144]                      | 129 [115–149]                       | 0.250 |
| SBP < 90 mmHg              | 13 (11%)                 | 8 (13%)                            | 5 (9%)                              | 0.561 |
| HR, bpm                    | 96 [79–108]              | 95 [79–107]                        | 97 [79–113]                         | 0.465 |
| HR > 120 bpm               | 17 (14%)                 | 5 (8%)                             | 12 (21%)                            | 0.066 |
| GCS                        | 15 [14–15]               | 15 [14–15]                         | 14 [13–15]                          | 0.009 |
| Injury severity            |                          |                                    |                                     |       |
| ISS                        | 22 [14–26]               | 17 [14–22]                         | 22 [17–27]                          | 0.002 |
| AIS head/neck              | 0 [0-2]                  | 0 [0–0]                            | 0 [0–3]                             | 0.368 |
| AIS face                   | 0 [0-0]                  | 0 [0–0]                            | 0 [0–0]                             | 0.395 |
| AIS chest                  | 2 [0-3]                  | 3 [1–3]                            | 2 [2–3]                             | 0.522 |
| AIS abdomen/pelvis         | 3 [2–3]                  | 3 [2–3]                            | 2 [2–3]                             | 0.920 |
| AIS extremities            | 2 [0-2]                  | 2 [0-2]                            | 2 [0–2]                             | 0.101 |
| AIS external               | 1 [0-1]                  | 1 [0–1]                            | 1 [0–1]                             | 0.689 |
| Solid organ injury         |                          |                                    |                                     |       |
| Liver                      | 57 (48%)                 | 31 (51%)                           | 26 (46%)                            | 0.586 |
| Spleen                     | 43 (36%)                 | 22 (36%)                           | 21 (37%)                            | 1.000 |
| Kidney                     | 34 (29%)                 | 17 (28%)                           | 17 (30%)                            | 0.841 |
| >1 Solid organ injury      | 19 (16%)                 | 12 (20%)                           | 7 (12%)                             | 0.323 |
| Associated injuries        |                          |                                    |                                     |       |
| TBI                        | 23 (19%)                 | 5 (8%)                             | 18 (32%)                            | 0.002 |
| Pelvic fracture            | 42 (36%)                 | 22 (36%)                           | 20 (35%)                            | 1.000 |
| LE fracture                | 26 (22%)                 | 9 (15%)                            | 17 (30%)                            | 0.074 |
| Need for angioembolization | 22 (19%)                 | 10 (16%)                           | 12 (21%)                            | 0.637 |



Continuous variables presented as median [interquartile range] and compared using the Mann-Whitney U test. Categorical variables presented as

#### Outcomes

|                                        | All patients $(n = 118)$ | Early prophylaxis ( $n = 61, 52\%$ ) | Late prophylaxis ( $n = 57, 48\%$ ) | р       |
|----------------------------------------|--------------------------|--------------------------------------|-------------------------------------|---------|
| VTE*                                   | 8 (7%)                   | 2 (3%)                               | 6 (11%)                             | 0.153   |
| DVT*                                   | 5 (4%)                   | 0 (0%)                               | 5 (9%)                              | 0.024   |
| PE*                                    | 5 (4%)                   | 2 (3%)                               | 3 (5%)                              | 0.672   |
| Hospital LOS                           | 9 [5–21]                 | 6 [4–11]                             | 14 [7–35]                           | < 0.001 |
| Need for ICU admission                 | 104 (88%)                | 52 (85%)                             | 52 (91%)                            | 0.398   |
| ICU LOS                                | 4 [3–9]                  | 3 [2–6]                              | 7 [4–12]                            | < 0.001 |
| Mortality                              | 3 (3%)                   | 2 (3%)                               | 1 (2%)                              | 1.000   |
| Need for post-prophylaxis transfusion  | 31 (26%)                 | 13 (21%)                             | 18 (31%)                            | 0.058   |
| Volume of post-prophylaxis transfusion | 0 [0–0]                  | 0 [0–0]                              | 0 [0–0]                             | 0.180   |

Continuous variables presented as median [interquartile range] and compared using the Mann–Whitney U test. Categorical variables presented as n (%) and compared using the Fisher's exact test

VTE venous thromboembolic event (DVT and PE), DVT deep vein thrombosis, PE pulmonary embolism, LOS length of stay (days), ICU intensive care unit

\*There were 10 VTEs in 8 patients



#### Conclusion

• In patients with nonoperative blunt solid organ injuries, early initiation of VTE prophylaxis resulted in a lower incidence of DVTs without an associated increase in bleeding or need for intervention. Although no difference in PE was noted, early initiation of VTE prophylaxis is likely to be safe and beneficial for patients with blunt solid organ injury.



### **HYPONATREMIA IN HEAD INJURY**

### **IMPULSIVITY IN TBI**

### **COMPLIANCE/CAPACITY ISSUES IN ACUTE COGNATIVE IMPAIRMENT**

Dr Teresa Bell



"...hyponatremia in head injury ... "

#### July 2020: "Hypo-Na in the Neurologically III Pt"

•Review article. Includes many types of brain injury – TBI, stroke, seizures, aneurysm, etc.

•Mild: 130-134; Mod. 120-129; Severe <120

-Acute sx: N/V; HA; Szr; resp. arrest; coma / death.

-Chronic sx: N/V; fatigue; gait / fall issues; attention deficits

•SIADH: hypervolemic. Increased ADH  $\rightarrow$  decreased renal excretion of water. Five mechanisms! Urine Na and Osm will be high (theoretically).

•Cerebral Salt Wasting: hypovolemic  $\rightarrow$  failure to tx appropriately can increase cerebral vasoconstriction. Unclear mechanisms. High urine Osm & Na.

•Treat to symptoms, rather than a Na level.





## Differentiating **Cerebral Salt Wasting** and **Syndrome of Inappropriate Antidiuretic Hormone**.

Extracell. volume status Heart rate Body weight Urine output decreased Hematocrit Blood urea nitrogen Serum bicarbonate Serum urate Urine osmolality Urine Na excretion

#### **Cerebral Salt Wasting**

Decreased Unchanged to increased Decreased Unchanged to increased

Increased (relative to baseline) Increased Increased Unchanged to decreased >300 mOsm/kg >40 mmol/L

#### <u>SIADH</u>

Unchanged Unchanged Unchanged Unchanged to

Unchanged Unchanged Unchanged >100 mOsm/kg >40 mmol/L



"...hyponatremia in head injury..."

#### June 2008: "Disorders of Na Balance after Brain Injury"

•Review article. Includes many types of brain injury – TBI, stroke, seizures, aneurysm, etc.

•SIADH: hypervolemic. Increased ADH  $\rightarrow$  decreased renal excretion of water. Urine Na and Osm will be high.

-Usually self-limited. Fluid restrict. Salt load. "Vaptans."

•Cerebral Salt Wasting: hypovolemic. Renal Na wasting with polyuria. Frequently dx'd as SIADH.

-2-4 weeks duration. Volume load and Salt load. Fludrocortisone.



#### Common causes of hypotonic hyponatraemia

Trauma Trust

Virginia Mason Franciscan Health

| Hypovolaemic hyponatraemia    | Normovolaemic hyponatraemia | Hypervolaemic hyponatraemia |
|-------------------------------|-----------------------------|-----------------------------|
| CSWS                          | SIADH                       | SIADH                       |
| Diuretics (including osmotic) | Traumatic brain injury      | Congestive cardiac failure  |
| Ketonuria                     | Subarachnoid hemorrhage     | Nephrotic syndrome          |
| Diarrhoea/vomiting            | Other CNS pathology         | Cirrhosis                   |
| Sweating                      | Drug induced                | Acute renal failure         |
| Blood loss                    | Pulmonary pathology         | latrogenic                  |
| Adrenal insufficiency         | Thiazide diuretics          |                             |
|                               | Adrenal insufficiency       |                             |
|                               | Hypothyroidism              |                             |
|                               | latrogenic                  |                             |

"...hyponatremia in head injury..."

#### June 2022: "Determinants of Hypo-Na after TBI"

•TBI pts over 1y, excluding chronic hypo-Na and death <72h.

•30% (of 283 pts); increased with greater age, worse CT scan esp. "diffuse pattern."

•"Significant" ("2pts < normal, more than 2d") spiked from  $7 \rightarrow 11$  days post-injury; "Borderline" (1-2pts < normal, 1-2d duration") had earlier onset and longer course.



"...hyponatremia in head injury..."

#### Sept. 2011: "Hypo-Na in pts with TBI"

•40 consecutive TBI pts with "mod. to severe" CHI.

•Daily Na x14d, CVP measurements, FEUA.

•27% hypo-Na, 6/9 in <7d; 5 c inc. CVP, 3 c low CVP. FEUA did not correlate

•CT scoring was more predictive of hyponatremia than GCS.



"...hyponatremia in head injury..."

#### Dec 2017: "Practical Protocol"

•Retrospective, 1500 consecutive pts c TBI. "Hypo-Na = <135, natriuresis = >40mEq/L.

•13% of pts had hypo-Na; SAH was most common CT finding.

•Early treatment with fludrocortisone decreased hosp. LOS – and eliminated need to differentiate SIADH and CSW



#### **Available treatments**

•Volume restriction – or volume replacement!

Loop diurectics

•Increased solute load: Na, urea, protein

-3% NaCl 100cc / 10m, up to 3x for sx

-Correct no more than 12mEq/L per 24h.

•"Vaptans" - iv conivaptan (esp. if CHF a factor; has TBI indication); oral tolavaptan.

•Fludrocortisone will increase Na... but not yet shown to improve outcomes. (01-0.4mg, daily)



Ramanan Rajagopal, Ganesh Swaminathan, Shalini Nair, Mathew Joseph, *Hyponatremia in Traumatic Brain Injury: A Practical Management Protocol*, World Neurosurgery, Volume 108, 2017, Pages 529-533, ISSN 1878-8750, https://doi.org/10.1016/j.wneu.2017.09.013.

Neurohospitalist. 2020 Jul; 10(3): 208–216. Published online 2020 Jan 10. doi: 10.1177/1941874419895124 PMCID: PMC7271621 PMID: 32549945 *Hyponatremia in the Neurologically III Patient: A Review* David P. Lerner, MD,1 Starane A. Shepherd, MD,2 and Ayush Batra, MD3

World Neurosurg. 2011 Sep-Oct;76(3-4):355-60. doi: 10.1016/j.wneu.2011.03.042. *Hyponatremia in patients with traumatic brain injury: etiology, incidence, and severity correlation* Subash Lohani 1, Upendra Prasad Devkota

Neurol Sci 2022 Jun;43(6):3775-3782. doi: 10.1007/s10072-022-05894-3. Epub 2022 Jan 17. *Determinants of hyponatremia following a traumatic brain injury* Etienne Léveillé 1, Meshal Aljassar 2, Benjamin Beland 3, Rothaina Jamal Saeedi 4, Judith Marcoux 5

Disorders of sodium balance after brain injury

Kate Bradshaw, MBBS FRCA, Martin Smith, MBBS FRCA Continuing Education in Anaesthesia Critical Care & Pain, Volume 8, Issue 4, August 2008, Pages 129–133, https://doi.org/10.1093/bjaceaccp/mkn019 Virginia Mason



Virginia Mason Franciscan Health

## Traumatic dislocations of the knee

### Chrystal Buchanan, PA-C



### Traumatic dislocations of the knee

- Determine the Mechanism of injury high velocity vs low velocity (vascular injury 5% and nerve injury is about 20%)
- There are 5 types of dislocation: anterior (31%), posterior (25%), lateral (13%), medial (13%), rotary (4%)
- Anterior dislocations usually occur from hyperextension of the knee and often the PCL and ACL will be torn
- Posterior dislocation usually has disruption of both cruciate ligaments



- Clinical findings:
  - Popliteal artery and vein injury is common
  - Peroneal nerve injury occurs in 20-40% of knee dislocations. Usually both cruciates and at least one collateral ligament are disrupted. If there is a nerve injury, be concerned for a possible vascular injury



- Subluxation/Dislocation of the Patella
  - Mechanism of injury: usually on twisting injury with the knee extended and foot externally rotated.
    Or direct blow to knee.
  - Symptoms: knee pain, complaints of instability
- Imaging: Xrays to rule out fracture or loose body. AP, lateral, sunrise views. Other imaging CT and MRI to further rule out loose bodies



- Treatment is nonoperative with bracing for first time dislocation without bony avulsion or presence of articular loose bodies.
  - This is followed by immobilization
  - Recurrent dislocation with non-op treatment is between 15-50% at 2-5 years.
- Operative management is indicated for chronic and recurrent patellar instability.



References:

- Stefancin JJ, Parker RD. First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res. 2007 Feb;455:93-101. doi: 10.1097/BLO.0b013e31802eb40a. PMID: 17279039.
- Palmu S, Kallio PE, Donell ST, Helenius I, Nietosvaara Y. Acute patellar dislocation in children and adolescents: a randomized clinical trial. J Bone Joint Surg Am. 2008 Mar;90(3):463-70. doi: 10.2106/JBJS.G.00072. PMID: 18310694.
- Kremchek TE, Welling RE, Kremchek EJ. Traumatic dislocation of the knee. Orthop Rev. 1989 Oct;18(10):1051-7. PMID: 2691961.
- Cash JD, Hughston JC. Treatment of acute patellar dislocation. Am J Sports Med. 1988 May-Jun;16(3):244-9. doi: 10.1177/036354658801600308. PMID: 3381981.
- Aglietti P, Buzzi R, De Biase P, Giron F. Surgical treatment of recurrent dislocation of the patella. Clin Orthop Relat Res. 1994 Nov;(308):8-17.
  PMID: 7955706.
- Gao, C., Yang, A. Patellar Dislocations: Review of Current Literature and Return to Play Potential. Curr Phys Med Rehabil Rep 6, 161–170 (2018). <u>https://doi.org/10.1007/s40141-018-0187-8</u>
- Longo UG, Ciuffreda M, Locher J, Berton A, Salvatore G, Denaro V. Treatment of Primary Acute Patellar Dislocation: Systematic Review and Quantitative Synthesis of the Literature. Clin J Sport Med. 2017 Nov;27(6):511-523. doi: 10.1097/JSM.0000000000000410. PMID: 28107220.

